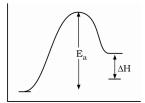


Daily Tutorial Sheet-5	Level-1

61.(BD) Reaction spontaneous at higher temperatures and non-spontaneous at lower temperatures, $\Delta_r H > 0$ and $\Delta_r S > 0$.

62.(ABCD)
$$\Delta G^{\circ} = -RT \ln K_{eq} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$ln\,K_{eq} = \frac{-\Delta H^{\circ}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$


$$slope = \frac{-\Delta H^{\circ}}{R}, y intercept = \frac{\Delta S^{\circ}}{R}$$

63.(BCD) $C(Graphite) \longrightarrow C(Diamond)$ $\Delta H = + ve$

i.e. C(Graphite) is thermodynamically more stable.

Internal energy and molar enthalpy do not depend on path. So both are state function 64.(AB)

65.(C)

 ΔH = heat of reaction (endothermic)

 E_a = energy of activation

Thus, $E_a > \Delta H$

66. [A:1,2];[B:1,2];[C:3];[D:1,2]

(A)
$$CO_2(g) + C(s) \longrightarrow 2CO(g)$$

(A)
$$CO_2(g) + C(s) \longrightarrow 2CO(g)$$
 $\Delta_r H^o = 2(-220) - (-394)$ and $\Delta_r S^o > 0$

$$\Rightarrow \qquad \quad \Delta_r G^o < 0 \ \, \text{and} \ \, \Delta_r H^o - \Delta_r U^o = \Delta n_g RT = \Big(2 - 1 \Big) RT > 0$$

(B)
$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

$$\Delta_r S > 0$$
 and $\Delta_r H - \Delta_r U = \Delta n_\sigma RT = (2-1)RT > 0$

(C)
$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

$$\Delta_r S < 0$$
 and $\Delta_r H - \Delta_r U = (2-1)RT < 0$

(D)
$$Cl(g) \longrightarrow 2Cl(g)$$

$$\Delta_r S > 0$$
 and $\Delta_r H - \Delta_r U = (2-1)RT > 0$

 \Rightarrow In standard state heat of formation (ΔH_f) and free energy change of formation (ΔG_f) will be zero.

68.(D)
$$PCl_5(g) \rightleftharpoons PCl_3(g) - Cl_2(g) \Rightarrow \Delta G = 0$$

$$0 = \Delta H - T \Delta S$$

Since gaseous moles are increasing $\Delta S > 0$

Thus
$$\Delta H = T\Delta S \implies \Delta H > 0$$

69.(B)
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -95 \times 1000 - 500 \times (-190) = -95000 + 95000 = 0$$

Upto T = 500 K the synthesis of ammonia is spontaneous. After 500 K synthesis becomes nonspontaneous, so ammonia will dissociate spontaneously.

70.(C) Internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, then its internal energy remains same.

VMC | Chemistry 46 Thermodynamics

71.(D)
$$\Delta H = -$$
 ve (combustion reaction)

 $\Delta S = + \text{ ve (spontaneous at all temperature)}$

 $\Delta G = -$ ve (because reaction is spontaneous)

$$\Rightarrow \Delta S_{sys.} + \Delta S_{surr.} > 0$$

73.(A)
$$A(\ell) \rightleftharpoons A(g)$$
 at boiling point

$$\Delta H = -100 - (-130) = 30 \text{ kJ/mol}$$
; $\Delta S = 200 - 100 = 100 \text{ kJ/mol}$

For equilibrium
$$\Delta G = 0 \implies T_b = \frac{\Delta H}{\Delta S} = 300 \, \text{K}$$

74.(A) For equilibrium
$$\Delta G = 0$$

75.(A)
$$H_2O(1 \text{ bar}, 373 \text{ K}) \longrightarrow H_2O(g)(1 \text{ bar}, 373 \text{ K})$$

$$\Rightarrow$$
 equilibrium \Rightarrow $\Delta G = 0$

Since liquid \longrightarrow gaseous phase $\Delta S > 0$

VMC | Chemistry 47 Thermodynamics